
Agilent I/O Libraries Technical Overview
Agilent Technologies

The Agilent I/O Libraries are the software that is common to the Agilent I/O hardware products -- the original
Standard Instrument Control Library (SICL), and the public-standard Virtual Instrument Standard Architecture
(VISA).

SICL is an Agilent standard I/O library which preceded the VXIplug&play standard VISA. It is provided to support
exiting SICL applications. While SICL offers the steps forward of being supported on multiple platforms and
multiple interfaces, it is an HP-only standard. The next step forward is a standard supported by multiple vendors.
This was accomplished through the VISA spec, defined by the VXI Plug&Play Alliance. The following describes
these I/O Libraries.

VISA
This is an I/O Library similar in features and functionality to SICL. It was developed by the VXIplug&play System
alliance to specify a standard that can be used with multiple vendors. Like SICL, it supports multiple platforms,
multiple interfaces -- and has similar capabilities, but different syntax. Agilent VISA is implemented on top of
SICL. Note that Agilent released an early version of VISA on Win3 that was known as the VISA Transition
Library, or VTL. VTL is obsolete.

VISA is required for support of VXIplug&play drivers and is currently also supported under Microsoft and Borland
C/C++. It also works on Visual BASIC for Windows. VISA resembles SICL in many ways but with many
differences. The best way to get started with VISA is to take a look at an example program and then discuss its
details:

#define DMM "GPIB0::22::INSTR" /* Instrument address (722). */
#define TIMEOUT 5000 /* Timeout in milliseconds. */

#include <visa.h>
#include <stdio.h>
#include <stdlib.h>

void main ()
{

ViSession rsm,
dev;

ViStatus err;
char b[256];

puts("Opening session and setting timeout.");

err = viOpenDefaultRM(&rsm);
if(err != 0)
{

puts("Can't open resource manager.");
exit(1);

}
err = viOpen(rsm, DMM, VI_NULL, VI_NULL, &dev);
if(err != 0)
{

puts("Can't open device session.");
exit(1);

}
viSetAttribute(dev, VI_ATTR_TMO_VALUE, TIMEOUT);

puts("Initializing device and getting ID string from DMM.");

err = viClear(dev);
if(err != 0)
{

puts("Can't clear interface.");
exit(1);

}
err = viPrintf(dev, "*RST;*CLS\n");
if(err != 0)
{

puts("Can't send reset-clear commands to device.");
exit(1);

}
err = viPrintf(dev, "*IDN?\n");
if(err != 0)
{

puts("Can't send ID command to device.");
exit(1);

}
err = viScanf(dev, "%s", &b);
if(err != 0)
{

puts("Can't read ID string from device.");
exit(1);

}

printf("ID: %s\n", b);

puts("Closing session, all done.");

viClose(dev);
viClose(rsm);

}

The first thing to notice is that to compile a VISA-based program you need to "include" the appropriate header file:

include "visa.h"

In SICL, you have to open a session on a particular interface; this is true for VISA as well, but you also have open a
session for the "VISA resource manager" -- a software process analogous to (but different in detail from) a VXI
resource manager. A particular device is identified with yet another new device syntax -- in this case:

GPIB0::22:INSTR

-- gives the device at address 22 on the default interface. This addressing scheme follows the form:

GPIB0::8::INSTR 708
GPIB0::8::4::INSTR 70804
ASLR1::INSTR COM1
VXI0::24::INSTR Backplane access to logical address 24.
GPIB-VXI0::24::INSTR Command module at 70900 & device at 24.

Note that:
• GPIBn indicates a GPIB interface to an instrument using GPIB primary/secondary addresses.
• ASLR1 indicates a serial port.
• VXIn indicates embedded-controller (or similar) access to a VXI mainframe using VXI logical addresses.
• GPIB-VXIn indicates access to a VXI mainframe through a GPIB command module ... this might seem to

be equivalent to the "GPIBn" designation, but the "GPIB-VXIn" scheme allows you to still use VXI logical
addresses and VXI-backplane specific operations through an emulation scheme.

A VISA program looks much like a SICL program, though you can't install an errorhandler -- you have to check for
errors yourself. (The error variable will be less than 0 for errors, will equal zero if no error, and will be greater than
0 for warnings.) You also have to use a single set of commands, "viSetAttribute()" and "viGetAttribute()", to
perform various control and status functions; for example:

viSetAttribute(dev, VI_ATTR_TMO_VALUE, TIMEOUT); // Set timeout.
viSetAttribute(dev, VI_ATTR_SEND_END_EN, VI_TRUE); // Enable END.
viSetAttribute(dev, VI_ATTR_SUPPRESS_END_EN, TIMEOUT); // Set timeout.
viSetAttribute(dev, VI_ATTR_TERMCHR, '\n'); // Set termchar.
viSetAttribute(dev, VI_ATTR_TERMCHR_EN, VI_FALSE); // Disable termchar.

Other features of VISA not shown here include an ability to read the currently known devices from the VISA
resource manager, and the ability to either wait for or set up a handler for events. VISA implements the following
commands:

viAssertTrigger // Assert interface trigger.
viClear // Clear a device.
viClose // Close a session.
viDisableEvent // Disable event handling.
viDiscardEvents // Discard logged events.
viEnableEvent // Enable event.
viEventHandler // Define event handler.
viFindNext // Get next device from list created by "viFindRsrc()".
viFindRsrc // Get list of devices on a specified interface.
viFlush // Flush read and write buffers associated with formatted I/O.
viGetAttribute // Get session attribute value.
viIn8 and viIn16 // Get byte/word value from memory space.
viInstallHandler // Install handler routine for event callbacks.
viMapAddress // Map memory address space.
viOpen // Open a session to specific device.
viOpenDefaultRM // Open a session to default resource manager.
viOut8 and viOut16 // Write byte/word to memory address.
viPeek8 and viPeek16 // Read byte/word from memory address.
viPoke8 and viPoke16 // Write byte/word to memory address.
viPrintf // Perform formatted output.
viRead // Perform unformatted input.
viReadSTB // Read status byte from device that requests service.
viScanf // Perform formatted input.
viSetAttribute // Set session attribute.
viSetBuf // Set buffer size for formatted I/O.
viStatusDesc // Provide status string.
viUninstallHandler // Remove event handler.
viUnmapAddress // Unmap memory address.
viVPrintf // Perform formatted output.
viVScanf // Perform formatted input.
viWaitOnEvent // Wait for event to occur.
viWrite // Write unformatted data to device.

Some final comments:
• The 82335 card cannot be used with VISA (which implies that it cannot be used with VXIplug&play

drivers).
• Beware of mixing VISA and SICL calls in the same program; you cannot communicate with the same

instrument using both VISA and SICL at the same time, you must close all SICL sessions before closing
the last VISA session, and you must not try to access VISA sessions with SICL calls, or the reverse.

• With VISA 2.0 or less, the LOCAL/REMOTE or PASS CONTROL features are not implemented.

SICL
The SICL software provides a library of I/O routines that has considerable flexibility and is source-compatible (to
the extent possible) between different platforms and different interfaces. SICL is supported under C (as well as VEE
and BASIC for HP-UX) on HP-UX platforms, and C and Visual BASIC (as well as VEE and BASIC for Windows)
on Microsoft Windows platforms. It supports GPIB, RS-232, LAN-GPIB, and GPIO interfaces. Since SICL is an
Agilent only library, it is only recommend for existing SICL applications. VISA is recommend for new
applications.

A C program using SICL to get a voltage measurement from a DMM is illustrated below:

#include <stdio.h>
#include "sicl.h"

#define VOLTMETER "hpib7,22"

void main(void)
{

INST dvm;
float data;

ionerror(I_ERROR_EXIT);
dvm = iopen(VOLTMETER);
itimeout(dvm,1000);

ipromptf(dvm,"MEAS:VOLT:DC?\n", "%f", &data);

printf("Result is %f\n", data);
iclose(dvm);

}

The SICL commands are listed below. Note that some commands are specific to certain interfaces, and some are not
implemented for Visual BASIC:

IABORT Abort current SICL operations.
IBLOCKCOPY Perform block data copy.
ICAUSEERR Force SICL error.
ICLEAR Clear device or interface.
ICLOSE Close SICL session.
IFLUSH Flush formatted-I/O buffers.
IFREAD Read formatted-I/O data.
IFWRITE Write formatted-I/O data.
IGETADDR Returns address of string sent to iopen.
IGETDATA Get pointer to data structure for isetdata.
IGETDEVADDR Get address of remote device.
IGETERRNO Get error number of last error.
IGETERRSTR Get error string for error number.
IGETGATEWAYTYPE NO-VB LAN Get LAN gateway for session.

IGETINTFSESS Get interface session number.
IGETINTFTYPE Get interface type for session.
IGETLOCKWAIT Get locking wait flag setting.
IGETLU Get interface address.
IGETLUINFO Get interface description.
IGETLULIST Get list of configured interface.
IGETONERROR NO-VB Get error handler address.
IGETONINTR NO-VB Get interrupt handler address.
IGETONSRQ NO-VB GPIB Get SRQ handler address.
IGETSESSTYPE Get session type (interface, dev, commander).
IGETTERMCHR Get termination character.
IGETTIMEOUT Get current timeout value.
IGPIBATNCTL GPIB Control ATN line.
IGPIBBUSADDR GPIB Set GPIB card address.
IGPIBBUSSTATUS GPIB Get GPIB bus line status.
IGPIBGETT1DELAY GPIB Get T1 delay time value.
IGPIBLLO GPIB Set GPIB local lockout mode.
IGPIBPASSCTL GPIB Pass control.
IGPIBPPOLL GPIB Perform GPIB parallel poll.
IGPIBPPOLLCONFIG GPIB Set up parallel poll configuration.
IGPIBPPOLLRESP GPIB Parallel poll response value.
IGPIBRENCTL GPIB Control GPIB remote enable line.
IGPIBSENDCMD GPIB Sent GPIB commands.
IGPIBSETT1DELAY GPIB Set T1 delay time value.
IHINT Specify transfer mode (DMA, POLL, INTR).
IINTROFF NO-VB Disable interrupt handlers.
IINTRON NO-VB Enable interrupt handlers.
ILANGETTIMEOUT NO-VB LAN Get LAN timeout value.
ILANTIMEOUT NO-VB LAN Set LAN timeout value.
ILOCAL GPIB Set local operation.
ILOCK Lock a session.
IMAP VXI Map VXI memory into process space.
IMAPINFO VXI Determine available VXI memory mapping

options.
IONERROR NO-VB Install error handler.
IONINTR NO-VB Install interrupt handler.
IONSRQ NO-VB Install SRQ handler.
IOPEN Open an interface session.
IPEEK VXI Peek from VXI memory space.
IPOKE VXI Poke into VXI memory space.
IPOPFIFO VXI Read data from FIFO and put into memory.
IPRINTF Perform printed output.
IPROMPTF Send string and get response.
IPUSHFIFO VXI Read data from memory and put into FIFO
IREAD Get raw data from device.
IREADSTB Read SRQ status byte.
IREMOTE GPIB Set remote mode.
ISCANF Read formatted data from device.
ISERIALBREAK SER Send break character over serial.
ISERIALCTRL SER Set serial parameters.
ISERIALMCLCTRL SER Set serial control lines.
ISERIALMCLSTAT SER Read status of serial control lines.
ISERIALSTAT SER Read status of serial parameters.
ISETBUF NO-VB Set buffers for formatted I/O.
ISETDATA NO-VB Set up user-defined data structures.
ISETINTR NO-VB Enable response to interrupt.
ISETLOCKWAIT Set wait or error on locked device.

ISETSTB GPIB Send SRQ response byte.
ISETUBUF NO-VB Set up buffer for formatted I/O.
ISWAP Swap data byte ordering in a block.
ITERMCHR Set output termination character.
ITIMEOUT Set timeout value.
ITRIGGER Trigger remote device.
IUNLOCK Unlock a device or interface.
IUNMAP VXI Unmap VXI memory mapping.
IVERSION Get SICL revision level.
IVXIBUSSTATUS VXI Get VXI bus status.
IVXIGETTRIGROUTE VXI Get VXI trigger routing.
IVXIRMINFO VXI Get data on device from resource manager.
IVXISERVANTS VXI Get list of servants.
IVXITRIGOFF VXI Disable VXI triggering.
IVXITRIGON VXI Enable VXI triggering.
IVXITRIGROUTE VXI Specify VXI trigger routing.
IVXIWAITNORMOP VXI Specify wait or error on VXI operation.
IVXIWS VXI Send VXI word-serial command.
IWAITHDLR NO-VB Wait on handler execution.
IWRITE Write unformatted data.
IXTRIG Execute extended trigger.
SICLCLEANUP Performs housekeeping (Win3 only).

